How does cyanide inhibit superoxide reductase? Insight from synthetic FeIIIN4S model complexes.
نویسندگان
چکیده
Superoxide reductases (SORs) are nonheme iron-containing enzymes that reduce HO(2) to H(2)O(2). Exogenous substrates such as N(3)(-) and CN(-) have been shown to bind to the catalytic iron site of SOR, and cyanide acts as an inhibitor. To understand how these exogenous ligands alter the physical and reactivity properties of the SOR iron site, acetate-, azide-, and cyanide-ligated synthetic models of SOR have been prepared. The x-ray crystal structures of azide-ligated [Fe(III)(S(Me2)N(4)(tren))(N(3))](+) (3), dimeric cyanide-bridged ([Fe(III)(S(Me2)N(4)(tren))](2)-mu-CN)(3+) (5), and acetate-ligated [Fe(III)(S(Me2)N(4)(tren))(OAc)](+) (6) are described, in addition to x-ray absorption spectrum-derived and preliminary crystallographic structures of cyanide-ligated [Fe(III)(S(Me2)N(4)(tren))(CN)](+) (4). Cyanide coordination to our model (4) causes the redox potential to shift anodically by 470 mV relative to acetate-ligated 6 and 395 mV relative to azide-ligated 3. If cyanide coordination were to cause a similar shift in redox potential with SOR, then the reduction potential of the catalytically active Fe(3+) center would fall well below that of its biological reductants. These results suggest therefore that cyanide inhibits SOR activity by making the Fe(2+) state inaccessible and thus preventing the enzyme from turning over. Cyanide inhibits activity in the metalloenzyme superoxide dismutase via a similar mechanism. The reduced five-coordinate precursor to 3, 4, and 6 [Fe(II)(S(Me2)N(4)(tren))](+) (1) was previously shown by us to react with superoxide to afford H(2)O(2) via an [Fe(III)(S(Me2)N(4)(tren))(OOH)](+) intermediate. Cyanide and azide do not bind to 1 and do not prevent 1 from reducing superoxide.
منابع مشابه
How does cyanide inhibit superoxide reductase? Insight from synthetic FeN4S model complexes
and CN2 have been shown to bind to the catalytic iron site of SOR, and cyanide acts as an inhibitor. To understand how these exogenous ligands alter the physical and reactivity properties of the SOR iron site, acetate-, azide-, and cyanide-ligated synthetic models of SOR have been prepared. The x-ray crystal structures of azideligated [Fe(SN4(tren))(N3)] (3), dimeric cyanide-bridged ([Fe(SN4(tr...
متن کاملSuperoxide generation by endothelial nitric oxide synthase: the influence of cofactors.
The mechanism of superoxide generation by endothelial nitric oxide synthase (eNOS) was investigated by the electron spin resonance spin-trapping technique using 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide. In the absence of calcium/calmodulin, eNOS produces low amounts of superoxide. Upon activating eNOS electron transfer reactions by calcium/calmodulin binding, superoxide formation is in...
متن کاملCyanide acclimation in willow (Salix babylonica L.), a prospect for the phytoremediation of cyanide
Phytoremediation counts as a major method for future which essentially needs resistance to contaminating agents. We pretreated the plants (Salix babylonica, as a model plant in phytoremediation of polluted waters) by sodium cyanide (0, 3 and 5 mg CN- L-1) to induce resistance with regard to acclimation and then examined their resistance to higher concentrations of cyanide. Accordingly, some of ...
متن کاملMononuclear Manganese–Peroxo and Bis ACHTUNGTRENNUNG(m-oxo)dimanganese Complexes Bearing a Common N-Methylated Macrocyclic Ligand
Metal–oxygen adducts (Mx Ox, x=1 or 2), such as metal– superoxo, –peroxo, and –oxo species, are key intermediates often detected in the catalytic cycles of dioxygen activation by metalloenzymes. In biomimetic and synthetic chemistry, numerous Mx Ox complexes have been prepared and characterized with various physicochemical methods as structural and functional models of enzymes. Among the Mx O2 ...
متن کاملDiminished inhibition of mitochondrial electron transfer from succinate to cytochrome c by thenoyltrifluoroacetone induced by antimycin.
Thenoyltrifluoroacetone inhibits succinate-cytochrome c reductase activity of resolved succinate*cytochrome c reductase complex. Dixon plots of [succinate-cytochrome c reductase activity]-’ or [succinateubiquinone reductase activity]-’ versus concentration of inhibitor are consistent with there being a single site of inhibition by thenoyltrifluoroacetone in resolved reductase complex. This agre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 100 7 شماره
صفحات -
تاریخ انتشار 2003